# This file is part of the pyMOR project (http://www.pymor.org).
# Copyright 2013-2018 pyMOR developers and contributors. All rights reserved.
# License: BSD 2-Clause License (http://opensource.org/licenses/BSD-2-Clause)
from itertools import product
from pymor.analyticalproblems.elliptic import StationaryProblem
from pymor.domaindescriptions.basic import RectDomain
from pymor.functions.basic import ConstantFunction, ExpressionFunction, LincombFunction
from pymor.parameters.functionals import ProjectionParameterFunctional
from pymor.parameters.spaces import CubicParameterSpace
[docs]def thermal_block_problem(num_blocks=(3, 3), parameter_range=(0.1, 1)):
"""Analytical description of a 2D 'thermal block' diffusion problem.
The problem is to solve the elliptic equation ::
- ∇ ⋅ [ d(x, μ) ∇ u(x, μ) ] = f(x, μ)
on the domain [0,1]^2 with Dirichlet zero boundary values. The domain is
partitioned into nx x ny blocks and the diffusion function d(x, μ) is
constant on each such block (i,j) with value μ_ij. ::
----------------------------
| | | |
| μ_11 | μ_12 | μ_13 |
| | | |
|---------------------------
| | | |
| μ_21 | μ_22 | μ_23 |
| | | |
----------------------------
Parameters
----------
num_blocks
The tuple `(nx, ny)`
parameter_range
A tuple `(μ_min, μ_max)`. Each |Parameter| component μ_ij is allowed
to lie in the interval [μ_min, μ_max].
"""
def parameter_functional_factory(ix, iy):
return ProjectionParameterFunctional(component_name='diffusion',
component_shape=(num_blocks[1], num_blocks[0]),
coordinates=(num_blocks[1] - iy - 1, ix),
name='diffusion_{}_{}'.format(ix, iy))
def diffusion_function_factory(ix, iy):
if ix + 1 < num_blocks[0]:
X = '(x[..., 0] >= ix * dx) * (x[..., 0] < (ix + 1) * dx)'
else:
X = '(x[..., 0] >= ix * dx)'
if iy + 1 < num_blocks[1]:
Y = '(x[..., 1] >= iy * dy) * (x[..., 1] < (iy + 1) * dy)'
else:
Y = '(x[..., 1] >= iy * dy)'
return ExpressionFunction('{} * {} * 1.'.format(X, Y),
2, (), {}, {'ix': ix, 'iy': iy, 'dx': 1. / num_blocks[0], 'dy': 1. / num_blocks[1]},
name='diffusion_{}_{}'.format(ix, iy))
return StationaryProblem(
domain=RectDomain(),
rhs=ConstantFunction(dim_domain=2, value=1.),
diffusion=LincombFunction([diffusion_function_factory(ix, iy)
for ix, iy in product(range(num_blocks[0]), range(num_blocks[1]))],
[parameter_functional_factory(ix, iy)
for ix, iy in product(range(num_blocks[0]), range(num_blocks[1]))],
name='diffusion'),
parameter_space=CubicParameterSpace({'diffusion': (num_blocks[1], num_blocks[0])}, *parameter_range),
name='ThermalBlock({})'.format(num_blocks)
)