Bibliography

[A05]A. C. Antoulas, Approximation of Large-Scale Dynamical Systems, SIAM, 2005.
[ABG10]A. C. Antoulas, C. A. Beattie, S. Gugercin, Interpolatory model reduction of large-scale dynamical systems, Efficient Modeling and Control of Large-Scale Systems, Springer-Verlag, 2010.
[BG09]C. A. Beattie, S. Gugercin, Interpolatory projection methods for structure-preserving model reduction, Systems & Control Letters 58, 2009
[BG12]C. A. Beattie, S. Gugercin, Realization-independent H2-approximation, Proceedings of the 51st IEEE Conference on Decision and Control, 2012.
[BKS11]P. Benner, M. Köhler, J. Saak, Sparse-Dense Sylvester Equations in \mathcal{H}_2-Model Order Reduction, Max Planck Institute Magdeburg Preprint, available from http://www.mpi-magdeburg.mpg.de/preprints/, 2011.
[BEOR14]A. Buhr, C. Engwer, M. Ohlberger, S. Rave, A Numerically Stable A Posteriori Error Estimator for Reduced Basis Approximations of Elliptic Equations, Proceedings of the 11th World Congress on Computational Mechanics, 2014.
[BS18]A. Buhr, K. Smetana, Randomized Local Model Order Reduction. SIAM Journal on Scientific Computing, 40(4), A2120–A2151, 2018.
[CLVV06]Y. Chahlaoui, D. Lemonnier, A. Vandendorpe, P. Van Dooren, Second-order balanced truncation, Linear Algebra and its Applications, 2006, 415(2–3), 373-384
[GP05]M. A. Grepl, A. T. Patera, A Posteriori Error Bounds For Reduced-Basis Approximations Of Parametrized Parabolic Partial Differential Equations, M2AN 39(1), 157-181, 2005.
[GAB08]S. Gugercin, A. C. Antoulas, C. A. Beattie, \mathcal{H}_2 model reduction for large-scale linear dynamical systems, SIAM Journal on Matrix Analysis and Applications, 30(2), 609-638, 2008.
[HDO11]Haasdonk, B.; Dihlmann, M. & Ohlberger, M., A training set and multiple bases generation approach for parameterized model reduction based on adaptive grids in parameter space, Math. Comput. Model. Dyn. Syst., 2011, 17, 423-442
[HO08]B. Haasdonk, M. Ohlberger, Reduced basis method for finite volume approximations of parametrized evolution equations, M2AN 42(2), 277-302, 2008.
[HMT11]N. Halko, P. G. Martinsson and J. A. Tropp, Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions, SIAM Review, 53(2), 217–288, 2011.
[HLR18]C. Himpe, T. Leibner, S. Rave, Hierarchical Approximate Proper Orthogonal Decomposition, SIAM J. Sci. Comput. 40, A3267-A3292, 2018.
[PK16]P. Kürschner, Efficient Low-Rank Solution of Large-Scale Matrix Equations, Shaker Verlag Aachen, available from http://pubman.mpdl.mpg.de/pubman/, 2016.
[MS96]D. G. Meyer and S. Srinivasan, Balancing and model reduction for second-order form linear systems, IEEE Trans. Automat. Control, 1996, 41, 1632–1644
[MG91]D. Mustafa, K. Glover, Controller Reduction by \mathcal{H}_\infty-Balanced Truncation, IEEE Transactions on Automatic Control, 36(6), 668-682, 1991.
[OJ88]P. C. Opdenacker, E. A. Jonckheere, A Contraction Mapping Preserving Balanced Reduction Scheme and Its Infinity Norm Error Bounds, IEEE Transactions on Circuits and Systems, 35(2), 184-189, 1988.
[RS08]T. Reis and T. Stykel, Balanced truncation model reduction of second-order systems, Math. Comput. Model. Dyn. Syst., 2008, 14(5), 391-406
[W12]S. Wyatt, Issues in Interpolatory Model Reduction: Inexact Solves, Second Order Systems and DAEs, PhD thesis, Virginia Tech, 2012
[XZ11]Y. Xu and T. Zeng, Optimal \mathcal{H}_2 Model Reduction for Large Scale MIMO Systems via Tangential Interpolation, International Journal of Numerical Analysis and Modeling, vol. 8, no. 1, pp. 174-188, 2011